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Attractors of magnetohydrodynamic flows in an Alfvénic state
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Abstract. We present a simplified form of the magnetohydrodynamic system which describes
the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form
of Alfv én waves, such as happens in several turbulent situations. Bounds on the dimension of the
global attractor are found, and are shown to be an improvement of the standard ones for the full
magnetohydrodynamic equations.

1. Introduction

The simplest model for describing the evolution of a plasma consists in considering it as
a charged fluid, whose motion is under the influence of the Lorentz force, and where the
magnetic field is determined by the induction equation, obtained by combining Faraday’s
law and Ohm’s state relation. The resulting magnetohydrodynamic (MHD) equations for an
incompressible fluid, after normalization of constants, are

∂u

∂t
= ν1u− u · ∇u +B · ∇B −∇p −∇

(
B2

2

)
+ f1

∂B

∂t
= η1B − u · ∇B +B · ∇u + f2

divu = 0

divB = 0

(1)

plus some adequate boundary and initial conditions.u stands for the fluid velocity,B is the
magnetic field,p is the kinetic pressure,f1 andf2 are possible forcing terms,ν is the fluid
viscosity andη the resistivity, also called magnetic diffusivity.

WhenB = 0 we obtain the classical Navier–Stokes equations. A well known suggestion
[1–3] is that the onset of hydrodynamic turbulence occurs when the solutions approach a
topologically complicated attractor. Let us remember that a global attractor is a compact
subsetA of the underlying space (in this case the set of square-integrable functions in the
domain under consideration) such that the evolution of any bounded set in this space will
take it arbitrarily close toA. The existence of global attractors has been proved for the two-
dimensional incompressible Navier–Stokes and MHD equations (see e.g. [4]). The situation
is different in the three-dimensional case: it is not known if classical solutions exist for all
time, although they certainly do so at least up to some time depending on the initial condition.
Although in principle all the information concerning the evolution of the system is contained
in (1), the enormous analytic and numerical difficulties of integrating the equation for large
times force us to use a more heuristic type of argument to explain observable phenomena. In
particular in turbulent plasmas, where sharp space and time variations are common, a number
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of features are present which provide additional information about the original system. One of
them is the Alfv́en effect. The small-scale components of velocity and field,ud andBd , tend
to be aligned in the form of Alfv́en waves (ud = ±Bd ), which account for the null convective
effect of these modes:ud · ∇ud − Bd · ∇Bd = 0, ud · ∇Bd − Bd · ∇ud = 0. Several
explanations of this fact exist: one is that these small-scale fields tend to minimize the energy∫

u2 +B2 dV

while maintaining the so-called cross-helicity∫
u ·B dV.

The extremum condition givesu = ±B [5]. Also, eddies will only interact when two counter-
propagating Alfv́en waves on neighbouring field lines intersect, transferring energy to lower
modes [6]. It is also known that if we have a static equilibrium and consider small variations
v, b of it, these are governed by the linearized MHD equations [7–9]

∂v

∂t
= ν1v +B · ∇b + b · ∇B −∇(p1 +B · b)

∂b

∂t
= η1b− v · ∇B +B · ∇v.

(2)

In the ideal case (η = ν = 0) the only possible solutions correspond to (Alfvén) waves
propagating along the field lines ofB, normal to them, and such thatv = ±b. Therefore,
if we consider the large-scale field as quasi-static as compared with the small-scale one, and
larger than it in magnitude, the Alfvénic approximation is valid. A consequence of this is
equipartition: v2 = b2, i.e. the kinetic and magnetic energies are equal for these modes. This
assumption, admittedly not rigorously justified, seems to hold in most studied plasmas [10–12]
and we will accept it as part of our hypotheses.

As announced, we will substitute the standard MHD equations by a simpler model which
will approximate the real one for plasmas where the Alfvén effect is in force and the energy
of the small-scale components is much smaller than the total one. To state the assumptions
of the modified MHD model, we will concentrate on a periodic boxI = [0, 2π ]3 because
the eigenfunctions of the Laplacian are precisely the complex exponentials occurring in the
classical Fourier mode turbulence analysis, and which moreover are closed for the product of
functions. The following space is defined:

H =
{
w = (u;B) ∈ L2(I )6 : divu = divB = 0,w periodic,

∫
I

w dV = 0
}
. (3)

The condition
∫
I
w dV = 0 is mathematically convenient to later apply the divergence theorem.

If it holds for all time for the forcing termsf1 andf2 and for the initial condition,w(0), it
holds for all time, both for the system (1) and for the modified one we will define later.

Let us remember that the Sobolev spaceHm(I) is formed by the functions whosem first
partial derivatives are square-integrable inI , and that its norm is given by

‖u‖2Hm(I) =
∑
|α|6m
|Dαu|2L2(I ).

We will use mostlym = 0 (i.e. the spaceL2(I )) whose norm will be abbreviated to| |, and
m = 1, writing ‖ ‖ instead of‖ ‖1. V will be the subspaceH ∩ H 1(I )6. Since in principle
the functions inH do not need to be even continuous, it must be assumed that the conditions
divu = divB = 0 are taken in the sense of distributions and the periodicity means that
the appropriatetracesat the boundaries coincide. Those traces are known to exist within
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a well-defined function space. The projection of any gradient, such as∇(p + B2/2), in H
vanishes.

We will divide the set of Fourier modes in two classes: the mean one, where the MHD
equations hold without further constraint, and the diffusive range, where components are in
an Alfvénic state. The limitkd between these classes in fact depends on the large-scale field
through the Alfv́en velocity and the energy dissipation. Hence the modified system with a
constantkd will describe correctly the evolution of the plasma when we are within an invariant
subset of trajectories such that the Alfvén velocity and the energy dissipation are roughly
constant there. Such a thing really occurs in many turbulent situations, which are the ones we
consider; thus, although we will study this system within whole function spaces, we will always
obtain our conclusions from restrictions to invariant turbulent states. We must remember that
turbulence is by no means a general feature of real plasmas; for instance, a large mean magnetic
field will tend to suppress it. Every magnitudef has two obvious components: the meanfm
and the dissipative onefd , corresponding to the Fourier sum of the modes within each of these
ranges. We will assume that(ud;Bd) are in an Alfv́en state, in the sense that the nonlinear
interaction

ud · ∇ud −Bd · ∇Bd

ud · ∇Bd −Bd · ∇ud
(4)

vanishes. Also, the energy in the dissipative range is much smaller than the total one:
|ud | � |um|, |Bd | � |Bm|, so we will take all the terms of formfd · ∇gm as zero. By
its very nature of rapid variation, such a thing cannot be asserted of the terms infm · ∇gd , so
our system is really infinite dimensional and not a mere truncation of the original one. Hence
our turbulent MHD system becomes

∂u

∂t
= ν1u− um · ∇u +Bm · ∇B −∇

(
p +

B2

2

)
+ f1(t)

∂B

∂t
= η1B − um · ∇B +Bm · ∇u + f2(t)

divu = 0

divB = 0.

(5)

Notice thatum andBm also have null divergence and are periodic. Takeλ = min{ν, η} > 0,
and letD = (ν1; η1). F = (f1; f2) is a forcing term accounting for possible external
influences.

2. Attractors of the system

Let us define the trilinear formb

b(f , g,h) =
∫
I

(f · ∇g)h =
∫
I

∑
i,j

fi
∂gj

∂xi
hj (6)

which allows us to defineC : V × V → V ′ by

(C[(u1;B1), (u2;B2)], (u3;B3)) = b(u1,u2,u3)− b(B1,B2,u3)

+b(u1,B2,B3)− b(B1,u2,B3). (7)

After projecting in the subspace ofL2(I ) functions with null divergence, the MHD system
may be written

∂w

∂t
= Dw − C(w,w) + F

w(0) = w0.
(8)
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The following facts are now easy to prove.
The bilinear form

Cm : V × V → V ′

Cm(w,w
′) = C(wm,w

′)
(9)

satisfies

(Cm(w1,w2),w2) = 0 (10)

|(Cm(w1,w2),w3)| 6 M|w1|‖w2‖|w3|. (11)

The first identity is a consequence of the divergence theorem and the fact that all the functions
are periodic, so the boundary integrals vanish. The bound follows because in the finite-
dimensional space of functions with Fourier modes bounded bykd , the maximum and| | are
equivalent norms. As a matter of fact, it would be desirable to keep the termsfd · ∇gm,
thus making strict use of the Alfvén hypothesis: unfortunately, this will prove mathematically
awkward later. In particular, condition (10) would not hold, although the bounds in (11) would
still be valid. Rather than further complicate the mathematics, we will ignore this small term.
By the same reason we will assume that the forcing termF is independent of time. In this way
the solutionsw(t) will define a semigroup of operatorsS(t) : w0→ w(t). Now the modified
MHD system becomes

∂w

∂t
= Dw − Cm(w,w) + F

w(0) = w0.
(12)

A consequence of inequality (11) in the nonlinear terms of system (12) is that it has a unique
solution

w ∈ C([0,∞),H) ∩ L2([0, T ], V ) (13)

for all timeT > 0 if w0 ∈ H , and

w ∈ C([0,∞), V ) ∩ L2([0, T ], H 2(I )6) (14)

for everyT > 0 if w0 ∈ V . Moreover, there exists a maximal attractor which is compact and
connected inH . This result is a consequence of theorem 3.1 in [4, pp 113–16]. Essentially
the proof relies on the fact that there is an absorbing set (where all the solutions eventually lie)
which is bounded not only inH , but also inV , and therefore relatively compact inH .

In order to bound the dimension of the attractor of this system, we recall some basic
notation and results from [4]. Let us write (12) as

∂w

∂t
= G(w) + F . (15)

Letw(t) be the solution withw(0) = w0, and consider the linearized equation

∂U

∂t
= G′(w(t))U

U(0) = ξ.
(16)

Letφ1(t), . . . ,φm(t)be an orthonormal base of the space of solutions to system (16) associated
to them-dimensional space of initial conditionsξ1, . . . , ξm. Functionsφj may be taken to
depend continuously ont . Take

0m(t,w0) =
m∑
j=1

(G′(w(t))φj (t),φj (t)) (17)
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(the internal product in the spaceH , i.e. the usualL2 product) and let

qm(t) = sup
w0∈X

sup
ξj∈H,|ξj |61

(
1

t

∫ t

0
0m(τ,w0) dτ

)
qm = lim sup

t→∞
qm(t)

(18)

whereX is some bounded invariant subset of the semigroup. There is an additional technical
condition: the semigroupS(t) associated must beuniformly differentiablein the attractor
A [4, p 282 ss]. This follows in our case by a general result concerning a class of equations
which include (12) [4, p 373 ss]. If for somem, qm < 0, the Hausdorff dimension of the
attractor of the functions withinX is bounded bym, and the fractal dimension by 2m.

The linearized equation at a pointw is

∂U

∂t
= DU +Cm(w,U) +Cm(U ,w). (19)

Obviously

(DU ,U) 6 −λ‖U‖. (20)

On the other hand,(Cm(w,U),U) = 0, and if we denoteU = (v; b),w = (u;B),
(Cm(U ,w),U) =

∫
I

(vm · ∇u) · v − (bm · ∇B) · v + (vm · ∇B) · b− (bm · ∇u) · b. (21)

Consider the first summand in the integral: the rest are analogous. It is bounded by
‖vm‖∞|∇v||u|. If vm is the sum of the harmonics up tokd ,

‖vm‖∞ 6
( ∑
|k|6kd

|v̂(k)|2
)1/2

(2kd)
n/2 6 |v|(2kd)n/2 (22)

wheren is the space dimension. Since|∇v| 6 ‖v‖, adding all the terms and applying Cauchy–
Schwarz’s inequality, we get

|(Cm(U ,w),U)| 6 (2kd)n/2|U |2‖w‖. (23)

Hence

0m(t,w0) 6
m∑
j=1

(−λ‖φj‖2 + (2kd)
n/2|φj |2‖w(t)‖). (24)

First, |φj | = 1. Second, a generalization of the Lieb–Thirring inequality [4, p 466 ss] shows
that there exists a positive constantδ, independent ofλ andφj such that

m∑
j=1

‖φj‖2 > δm(2/n)+1. (25)

Finally, we use an expression of the dissipative frequencykd arising from scaling analysis [5,
p 201]:

kd =
(
E
ν2vA

)1/3

(26)

where it is assumed thatν andη are of the same order, so that we may takeν = λ. vA is
the Alfvén velocity, proportional in our conservative case to the mean magnetic field, which
we assume constant inX. Finally, E is the energy dissipation flux, defined as theensemble
average

E = λ〈∇w〉2 (27)
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which may be interpreted as

E = λ lim sup
t→∞

1

t

∫ t

0
‖w(s)‖2 ds. (28)

This will not depend on the trajectoryw(t) if the subsetX is formed by ergodic trajectories:
anyway,E is bounded by

λ lim sup
t→∞

sup
w0∈X

1

t

∫ t

0
‖w(s)‖2 ds. (29)

Integrating (24) and using Cauchy–Schwarz’s inequality,

1

t

∫ t

0
‖w(s)‖ ds 6

(
1

t

∫ t

0
‖w(s)‖2 ds

)1/2

(30)

after substitutingE by its bound, we get

qm 6 −δλm(2/n)+1 + 2n/2(λvA)
−n/6m

(
lim sup
t→∞

sup
w0∈X

1

t

∫ t

0
‖w(s)‖2 ds

)(n/6)+(1/2)
. (31)

We see that the key term is the mean integral of‖w‖2. There is a bound of it, obtained by
standard energy inequalities: it may be seen in [4, pp 334–5] for dimension two, but it holds
in any dimension given properties (10) and (11). It comes as

lim sup
t→∞

1

t

∫ t

0
‖w(s)‖2 ds 6 Cλ−2|F |2 (32)

whereC is a constant not depending onλ. To getqm < 0, we therefore need

m >
(

2n
2/4C(n

2/12)+(n/4)

δn/2v
n2/12
A

)
λ−(n

2/4)−n|F |(n2/6)+(n2/2) (33)

so that the Hausdorff and fractal dimensions of the attractor may blow up as resistivity
and viscosity decrease at most likeλ−21/4 for three-dimensional plasmas andλ−3 for two-
dimensional ones. For the full two-dimensional MHD system, present bounds obtain a scaling
of λ−4, which highlights the importance of the Alfvén effect in simplifying the turbulent
behaviour of the plasma. Obviously there are no known bounds for three-dimensional
magnetohydrodynamics.

The practical meaning of those estimates is that they represent in a sense the number of
degrees of freedom in the long-term evolution of the flow. In our case, for anm such as in
(33), the attractor can be parametrized byN = 2m + 1 variables, in the sense that there exists
an embedding ofA in RN . If we takeN = 4m + 1, we may even take this embedding to be an
orthogonal projection whose inverse is Hölder continuous [13,14].

3. Conclusions

We have studied a modified MHD system intended to take into account the Alfvén effect within
the dissipative modes in a turbulent plasma. This system will correctly describe the evolution
of velocity and magnetic field as long as the convective action of the small-scale components
of these magnitudes vanishes. This system possesses a global attractor whose Hausdorff and
fractal dimensions have at most an order of the minimum of the magnetic and kinetic viscosities
elevated to− 21

4 , in the three-dimensional case, and to−3 in the two-dimensional one, which
reflect the simplifying influence of the Alfv́en effect on a turbulent plasma.
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